1 Random Variables

1.1 Concepts

1. A random variable is any function $X: \Omega \rightarrow \mathbb{R}$. It isolates some concept that we care about. For example, when we flip a coin 20 times, then we can define a random variable which is the number of heads that we flip.
A probability mass function (PMF) is a function from \mathbb{R} to $[0,1]$ that is associated to a random variable X. We define $f(x)=P(X=x)=P\left(X^{-1}(\{x\})\right)$.
Two random variables X, Y are called independent if for any subsets $E, F \subset \mathbb{R}$, the subsets $X^{-1}(E), Y^{-1}(F) \subset \Omega$ are independent. To prove that two random variables are independent, we need to show that those two sets are independent for any two choices of E, F (actually, it suffices to only consider E, F as one point sets or that $P(X=x, Y=y)=P(X=x) P(Y=y)$ for any $x, y \in \mathbb{R})$. To prove that they are not independent, we only need to find one counterexample pair E, F.

1.2 Examples

2. Suppose that we roll two die and let X be equal to the maximum of the two rolls. Find $P(X \in\{1,3,5\})$ and draw the PMF for X.
3. When rolling two die, let Y be equal to the first die roll. Are X, Y independent random variables?

1.3 Problems

4. True False A RV goes from subsets of Ω to \mathbb{R}.
5. True False Similar to the probability function, a PMF takes events or subsets of \mathbb{R} and assigns a probability between $[0,1]$.
6. I flip a fair coin 4 times. Let X be the number of heads I get. Draw the PMF for X.
7. I roll two fair four sided die with sides numbered $1-4$. Let X be the product of the two numbers rolled. Find the range of X and draw the PMF for X.
8. (Challenge) I draw 5 cards from a deck of cards. Let X be the number of hearts I draw. What is the range of X and draw the PMF of X. Use this to find the probability that I draw at least 2 hearts.
